
PHP/MySQL Lab 1 – The obligatory “Hello World!”
(And something to do for a further 119 minutes…)

Introduction
The purpose of the next 4 labs is to create a working web application to interact with the
database you have designed for this module.
You will be developing this web application using PHP to select, add, edit and delete entries
as well carry out some processing on the data as it comes and goes from the database.
Each lab session will last for two hours and during this you can work at your own pace and
ask questions as required.
It is assumed you will be using the student web server for these labs, but you can use your
own server as long as it supports PHP and MySQL.
Details for accessing the student webserver can be found at http://mayar.abertay.ac.uk –
Filezilla

Task 1 - Obligatory Hello World.
Unlike running an application on your PC the PHP script is executed on the server, and the
plain HTML result is sent back to the browser.

Page 1 of 15 Lab 1 CE0931A

http://mayar.abertay.ac.uk/

Syntax
We talk about PHP's syntax, let us first define what syntax is referring to.
* Syntax - The rules that must be followed to write properly structured code.

PHP's syntax and semantics are similar to most other programming languages (C, Java, Perl)
with the addition that all PHP code is contained with a tag, of sorts, since it is designed to be
embedded within HTML pages. All PHP code must be contained within the following:

<?php
?>

There is also a shorthand version of this PHP tag, which requires shorthand support to be
enabled on your server:

<?
?>

When writing PHP, we suggest that you use the standard form (which includes the ?php)
rather than the shorthand form. This will ensure that your scripts will work on any server
with PHP support, whatever the settings.

Page 2 of 15 Lab 1 CE0931A

How to save your PHP pages
If you have PHP inserted into your HTML and want the web browser to interpret it correctly,
then you must save the file with a .php extension – if your file has any other extension, it
will probably be sent to the browser as-is, without running any of your commands!

Page 3 of 15 Lab 1 CE0931A

Example - simple HTML & PHP page
Below is an example of one of the easiest PHP and HTML page that you can create and still
follow web standards.
PHP and HTML Code:

<html>
<head>
<title>My First PHP Page</title>
</head>
<body>
<?php
echo "Hello World!";
?>
</body>
</html>

Display:
Hello World!
If you save this file (e.g. helloworld.php) and place it on PHP enabled server and load it up in
your web browser, then you should see "Hello World!" displayed. If not, please check that
you followed our example correctly.

We used the PHP command echo to write "Hello World!" and we will be talking in greater
depth about how echo is special later on in this tutorial.

Page 4 of 15 Lab 1 CE0931A

The semicolon!
As you may or may not have noticed in the above example, there was a semicolon after the
line of PHP code. The semicolon signifies the end of a PHP statement and should never be
forgotten. For example, if we repeated our "Hello World!" code several times, then we
would need to place a semicolon at the end of each statement.
PHP and HTML Code:

<html>
<head>
<title>My First PHP Page</title>
</head>
<body>
<?php
echo "Hello World! ";
echo "Hello World! ";
echo "Hello World! ";
echo "Hello World! ";
echo "Hello World! ";
?>
</body>
</html>

Display:
Hello World! Hello World! Hello World! Hello World! Hello World!

Page 5 of 15 Lab 1 CE0931A

White space
As with HTML, whitespace is ignored between PHP statements. This means it is OK to have
one line of PHP code, then 20 lines of blank space before the next line of PHP code. You can
also press tab to indent your code and the PHP interpreter will ignore those spaces as well.
PHP and HTML Code:

<html>
<head>
<title>My First PHP Page</title>
</head>
<body>
<?php
echo "Hello World!";

 echo "Hello World!";

?>
</body>
</html>

Display:
Hello World!Hello World!

Page 6 of 15 Lab 1 CE0931A

Variables
If you have never had any programming, algebra, or scripting experience, then the concept
of variables might be a new concept to you. A detailed explanation of variables is beyond
the scope of this tutorial, but we've included a refresher crash course to guide you.

A variable is a means of storing a value, such as text string "Hello World!" or the integer
value 4. A variable can then be reused throughout your code, instead of having to type out
the actual value over and over again. In PHP you define a variable with the following form:

• $variable_name = Value;

If you forget that dollar sign at the beginning, it will not work. This is a common mistake for
new PHP programmers!
Note: Also, variable names are case-sensitive, so use the exact same capitalization when
using a variable. The variables $a_number and $A_number are different variables in PHP's
eyes.
A quick variable example
Say that we wanted to store the values that we talked about in the above paragraph. How
would we go about doing this? We would first want to make a variable name and then set
that equal to the value we want. See our example below for the correct way to do this.
PHP Code:

<?php
$hello = "Hello World!";
$a_number = 4;
$anotherNumber = 8;
?>

Note for programmers: PHP does not require variables to be declared before being
initialized.
Variable naming conventions
There are a few rules that you need to follow when choosing a name for your PHP variables.

• PHP variables must start with a letter or underscore "_".
• PHP variables may only be comprised of alpha-numeric characters and underscores.

a-z, A-Z, 0-9, or _ .
• Variables with more than one word should be separated with underscores.

$my_variable
• Variables with more than one word can also be distinguished with capitalization.

$myVariable

This lab assumes you have a basic grasp of programming conventions and have an ability to
learn for yourself. Good sources of reference material are:

• http://www.w3schools.com/php
• http://www.tizag.com/phpT/

The remainder of this lab should be spent carrying out the following task to connect to your
MySQL Database

Page 7 of 15 Lab 1 CE0931A

http://www.w3schools.com/php
http://www.tizag.com/phpT/

Task 2 – Connecting to MySQL
Open a Connection to the MySQL Server
Before we can access data in a database, we must open a connection to the MySQL server.
In PHP, this is done with the mysqli_connect() function.
Syntax

mysqli_connect(host,username,password,dbname);

Parameter Description If using Lochnagar

host Optional. Either a host name or an
IP address

lochnagar.abertay.ac.uk

username Optional. The MySQL user name sql123456789 (from e-mail)

password Optional. The password to log in
with

(from e-mail)

dbname Optional. The default database to
be used when performing queries

Sql123456789 (same as username)

Note: There are more available parameters, but the ones listed above are the most
important. Although technically “optional”, you need to specify all four to connect to
Lochnagar, the Abertay database server – you’ll be told the username and password to use
in an e-mail by Abertay’s IS department.
In the following example we store the connection in a variable ($con) for later use in the
script:

<?php
// Create connection
$con=mysqli_connect("example.com","peter","abc123","
my_db");

// Check connection
if (mysqli_connect_errno($con))
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }
?>

Page 8 of 15 Lab 1 CE0931A

Close a Connection
The connection will be closed automatically when the script ends. To close the connection
before, use the mysqli_close() function:

<?php
$con=mysqli_connect("example.com","peter","abc123","
my_db");

// Check connection
if (mysqli_connect_errno($con))
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }

mysqli_close($con);
?>

Page 9 of 15 Lab 1 CE0931A

Task 3 – Create a Table
The CREATE TABLE statement is used to create a table in MySQL.
We must add the CREATE TABLE statement to the mysqli_query() function to execute the
command.
The following example creates a table named "Persons", with three columns: "FirstName",
"LastName" and "Age":

<?php
$con=mysqli_connect("example.com","peter","abc123","
my_db");
// Check connection
if (mysqli_connect_errno())
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }

// Create table
$sql="CREATE TABLE Persons(FirstName
CHAR(30),LastName CHAR(30),Age INT)";

// Execute query
if (mysqli_query($con,$sql))
 {
 echo "Table persons created successfully";
 }
else
 {
 echo "Error creating table: " .
mysqli_error($con);
 }
?>

Note: When you create a field of type CHAR, you must specify the maximum length of the
field, e.g. CHAR(50).
The data type specifies what type of data the column can hold.
If using Lochnagar, you’ll be able to check the results of this via PHPMyAdmin:
https://phpmyadmin.abertay.ac.uk/phpmyadmin/

Page 10 of 15 Lab 1 CE0931A

Primary Keys and Auto Increment Fields
Each table in a database should have a primary key field.
A primary key is used to uniquely identify the rows in a table. Each primary key value must
be unique within the table. Furthermore, the primary key field cannot be null because the
database engine requires a value to locate the record.
The following example sets the PID field as the primary key field. The primary key field is
often an ID number, and is often used with the AUTO_INCREMENT setting.
AUTO_INCREMENT automatically increases the value of the field by 1 each time a new
record is added. To ensure that the primary key field cannot be null, we must add the NOT
NULL setting to the field:

$sql = "CREATE TABLE Persons
(
PID INT NOT NULL AUTO_INCREMENT,
PRIMARY KEY(PID),
FirstName CHAR(15),
LastName CHAR(15),
Age INT
)";

If you’ve already created the database, running CREATE TABLE a second time will give you
an error message – you need to delete (“DROP” in SQL) the existing table before creating it
with new contents.

Page 11 of 15 Lab 1 CE0931A

Task 4 – Insert into a Database
The INSERT INTO statement is used to add new records to a database table.
Syntax
It is possible to write the INSERT INTO statement in two forms.
The first form doesn't specify the column names where the data will be inserted, only their
values:
INSERT INTO table_name
VALUES (value1, value2, value3,...)
The second form specifies both the column names and the values to be inserted:
INSERT INTO table_name (column1, column2, column3,...)
VALUES (value1, value2, value3,...)
To get PHP to execute the statements above we must use the mysqli_query() function. This
function is used to send a query or command to a MySQL connection.
Example
In the previous chapter we created a table named "Persons", with three columns;
"FirstName", "LastName" and "Age". We will use the same table in this example. The
following example adds two new records to the "Persons" table:

<?php
$con=mysqli_connect("example.com","peter","abc123","
my_db");
// Check connection
if (mysqli_connect_errno())
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }

mysqli_query($con,"INSERT INTO Persons (FirstName,
LastName, Age)
VALUES ('Peter', 'Griffin',35)");

mysqli_query($con,"INSERT INTO Persons (FirstName,
LastName, Age)
VALUES ('Glenn', 'Quagmire',33)");

mysqli_close($con);
?>

Page 12 of 15 Lab 1 CE0931A

Task 5 - Insert Data From a Form Into a Database
Now we will create an HTML form that can be used to add new records to the "Persons"
table.
Here is the HTML form:

<html>
<body>

<form action="insert.php" method="post">
Firstname: <input type="text" name="firstname">
Lastname: <input type="text" name="lastname">
Age: <input type="text" name="age">
<input type="submit">
</form>

</body>
</html>

When a user clicks the submit button in the HTML form, in the example above, the form
data is sent to "insert.php".
The "insert.php" file connects to a database, and retrieves the values from the form with
the PHP $_POST variables.
Then, the mysqli_query() function executes the INSERT INTO statement, and a new record
will be added to the "Persons" table.
Here is the "insert.php" page:

<?php
$con=mysqli_connect("example.com","peter","abc123","
my_db");
// Check connection
if (mysqli_connect_errno())
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }

$sql="INSERT INTO Persons (FirstName, LastName, Age)
VALUES
('$_POST[firstname]','$_POST[lastname]','$_POST[age]
')";

if (!mysqli_query($con,$sql))
 {
 die('Error: ' . mysqli_error($con));
 }
echo "1 record added";

mysqli_close($con);
?>

Page 13 of 15 Lab 1 CE0931A

Task 6 – Select Data From a Database Table
The SELECT statement is used to select data from a database.
Syntax
SELECT column_name(s)
FROM table_name
To get PHP to execute the statement above we must use the mysqli_query() function. This
function is used to send a query or command to a MySQL connection.
Example
The following example selects all the data stored in the "Persons" table (The * character
selects all the data in the table):

<?php
$con=mysqli_connect("example.com","peter","abc123","
my_db");
// Check connection
if (mysqli_connect_errno())
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }

$result = mysqli_query($con,"SELECT * FROM
Persons");

while($row = mysqli_fetch_array($result))
 {
 echo $row['FirstName'] . " " . $row['LastName'];
 echo "
";
 }

mysqli_close($con);
?>

The example above stores the data returned by the mysqli_query() function in the $result
variable.
Next, we use the mysqli_fetch_array() function to return the first row from the recordset as
an array. Each call to mysqli_fetch_array() returns the next row in the recordset. The while
loop loops through all the records in the recordset. To print the value of each row, we use
the PHP $row variable ($row['FirstName'] and $row['LastName']).
The output of the code above will be:

Peter Griffin
Glenn Quagmire

Page 14 of 15 Lab 1 CE0931A

Display the Result in an HTML Table
The following example selects the same data as the example above, but will display the data
in an HTML table:

<?php
$con=mysqli_connect("example.com","peter","abc123","
my_db");
// Check connection
if (mysqli_connect_errno())
 {
 echo "Failed to connect to MySQL: " .
mysqli_connect_error();
 }

$result = mysqli_query($con,"SELECT * FROM
Persons");

echo "<table border='1'>
<tr>
<th>Firstname</th>
<th>Lastname</th>
</tr>";

while($row = mysqli_fetch_array($result))
 {
 echo "<tr>";
 echo "<td>" . $row['FirstName'] . "</td>";
 echo "<td>" . $row['LastName'] . "</td>";
 echo "</tr>";
 }
echo "</table>";

mysqli_close($con);
?>

The output of the code above will be:
Firstname Lastname

Glenn Quagmire

Peter Griffin

Page 15 of 15 Lab 1 CE0931A

	PHP/MySQL Lab 1 – The obligatory “Hello World!”
	(And something to do for a further 119 minutes…)
	Introduction

	Task 1 - Obligatory Hello World.
	Syntax
	How to save your PHP pages
	Example - simple HTML & PHP page
	The semicolon!
	White space
	Variables
	Task 2 – Connecting to MySQL
	Task 3 – Create a Table
	Task 4 – Insert into a Database
	Task 5 - Insert Data From a Form Into a Database
	Task 6 – Select Data From a Database Table

