
CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

CE0825a - Object Oriented Programming
II

6: Inheritance/interfaces recap; Graphics;
packaging

James A Sutherland

Abertay University

Monday, 15th February 2016



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Object Oriented Programming
You can actually do “object oriented programming” in almost
any language, even assembler!
The essence of OOP is that the code is associated with the
data. Think of it in terms of the data having functionality of
its own: where in non-OOP you might ‘measure the length of
a string’ (for example, call strlen in C), in OOP you ‘ask the
string object how long it is’.
As a consequence of that, you might have different types of
object with the same functionality. For example, you could
have a special very long string type for storing entire
documents, where rather than counting characters the length
is pre-calculated and stored somewhere. Other bits of code
don’t need to know about that: they just ask for the length,
and get it.



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Early OOP: C++ or even C

Early ‘C++ compilers’ actually just turned C++ back into
plain old C!
C has a data structure system (struct), and you can use
pointers to functions as data. Put a list of function addresses
somewhere, put a pointer to that at the start of every ‘object’
structure – and you have OOP! (Chain those tables together
for inheritance.)
Microsoft also did ‘objects in C’ for COM; as further reading
see http://www.codeproject.com/Articles/13601/
COM-in-plain-C.

http://www.codeproject.com/Articles/13601/COM-in-plain-C
http://www.codeproject.com/Articles/13601/COM-in-plain-C


CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Java Inheritance: Another View

Back before Java and objects, we had data structures like this:

s t ruct po i n t {
i n t x ;
i n t y ;
enum { GRASS , TREE, RIVER } po i n t t y p e ;

} ;

No code, just data, so we’d create things like search_point.



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Java Inheritance: Another View 2

We could extend, by wrapping and adding bits:

s t ruct 3 dpo i n t {
s t ruct po i n t 2 dpo i n t ;
i n t z ;

} ;

Except now search_point doesn’t understand how to search
3dpoints: it won’t ‘know’ that a 3dpoint is a superset of a
point. Why can’t it operate on both types?



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Java Inheritance: Another View 3

Object-oriented: associate functions (which we now call
methods instead) with these structures (which are now
classes).
We introduce a rule: when looking for a function, try the
parent (then grandparent, etc) before giving up.
So, we have Vector, which extends AbstractList, which ...
AbstractCollection, Object.



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Java Interfaces

Interfaces are just a list of zero or more methods.
You mark a class as implementing an interface with the
implements keyword.



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

OOP summary

In summary:

OOP is about associating code more closely with data
‘Active’ structures which have functions not just data
Inheritance lets you extend a class with extra data or
features
An interface defines a feature a class has got



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

OOP summary

In summary:

OOP is about associating code more closely with data
‘Active’ structures which have functions not just data
Inheritance lets you extend a class with extra data or
features
An interface defines a feature a class has got



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

OOP summary

In summary:

OOP is about associating code more closely with data
‘Active’ structures which have functions not just data
Inheritance lets you extend a class with extra data or
features
An interface defines a feature a class has got



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

OOP summary

In summary:

OOP is about associating code more closely with data
‘Active’ structures which have functions not just data
Inheritance lets you extend a class with extra data or
features
An interface defines a feature a class has got



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Graphics formats – Introduction

Graphics files come in two forms: vector (mathematical
description of shapes) and bitmap (a regular array of dots).
Bitmaps in turn can be stored in lossy or lossless formats.
JPEG is lossy: deliberately throws ‘less important’ data away
to make a small photo that looks OK. PNG and GIF are
lossless: mathematically identical at every stage, but bigger
files.
A PDF can contain any of these types, along with text, scripts
and other content.
So ... which of these would you use for a map?



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Real world maps

Real maps use a mix depending on browser, content ... Google
Maps draws route overlays as a vector object using SVG, for
example.
For the coursework, we’ll be using Abertay campus maps.
These are available as PDFs – unfortunately, each PDF just
contains a single JPEG photo of an actual map. So, can’t
search, edit or zoom sensibly.



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Graphics summary

Graphics can be:
Vector – shapes, curves, infinitely scalable
Bitmap – pixels, zoom and you get big pixels

Lossy, for photographs
Lossless, for diagrams, screenshots



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Packaging Java apps

Java libraries and applications can be packed into JAR files

JAR = ZIP with different extension
Can create/edit/view with regular Zip software
But (usually) with special data: manifest file
Usually created automatically as part of build



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Packaging Java apps

Java libraries and applications can be packed into JAR files

JAR = ZIP with different extension
Can create/edit/view with regular Zip software
But (usually) with special data: manifest file
Usually created automatically as part of build



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Packaging Java apps

Java libraries and applications can be packed into JAR files

JAR = ZIP with different extension
Can create/edit/view with regular Zip software
But (usually) with special data: manifest file
Usually created automatically as part of build



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Packaging Java apps

Java libraries and applications can be packed into JAR files

JAR = ZIP with different extension
Can create/edit/view with regular Zip software
But (usually) with special data: manifest file
Usually created automatically as part of build



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Commercial Java

For commercial distribution, a Jar file is rare. More commonly:

Java Web Start - Java downloads and runs from the web
Wrap in an EXE file (Windows) or .app (Mac)
Various commercial tools for doing this too



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Creating JARs from Eclipse

For now, we’ll create one manually by right-clicking on your
project and selecting ‘Export...’
Note the mention of an Ant task. That’s the automation I
mentioned earlier: on big commercial projects, with lots of
source code to manage, you use a tool like Ant to get
everything compiled and current with a single command, or
even automatically on a schedule (continuous integration, CI).



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

JAR 1



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

JAR 2



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

JAR 3



CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Lab Task 6

There are five JPEG map images at
http://driesh.abertay.ac.uk/~j204453/ - use them!
Two tasks there - display an image in an SWT window, and
provide some sort of selector for the 5 levels.
For practice, try packaging your SWT application as a JAR file
and running it. (Not for submission, just for use later.)

http://driesh.abertay.ac.uk/~j204453/


CE0825a - Object Oriented Programming II 6: Inheritance/interfaces recap; Graphics; packaging

Week 7 – Coursework

The coursework is to build a map of the Abertay campus as a
Java (SWT) application. For week 7, think about how you will
achieve this: what features would you like? Searching,
directions ... For week 7, present a specification for your
project: what it is to achieve and how. During week 7 you will
get feedback on this plan, which you should incorporate in
your report.
Coursework deliverables:

Java application
Project report: what you did, why, and how

NB: Week 7 is attendance monitoring week! No lectures,
though, just labs as usual 3-5 in 4506.


