
CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

CE0825a - Object Oriented Programming

II

3: Object Recap, GUI, Regular Expressions

James A Sutherland

Abertay University

Monday, 25th January 2016



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Objects Recap

Everything is based on java.lang.Object.
When we talk about “an object”, we mean an instance of a
Class.
Real world equivalent: my phone (an object) is an iPhone 6+
(a class).
Java best practice: Title Case for Classes, lower case for
objects/instances.
Subclassing: “it’s like an X, but...”
RW: “The iPhone 6+ is like an iPhone 6, but a bit bigger”
i.e. it has the same buttons, software, sockets ...
in Java: class BigPhone extends OrdinaryPhone



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Interfaces, Abstracts

An Abstract Class is just a class you can’t directly instantiate,
only subclass, usually because it has something missing: for
example, some essential method is not yet implemented.
For example, a button defines some things - but not what the
text on it says, or what happens when it’s pressed.
An interface just lists some functionality that must be present.
For example, “Deletable” might specify that any class
implementing it as a method “delete”:
interface Deletable { void delete(); }
Note: Title Case (like Classes), no method bodies allowed at
all. Ever.



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Generics

When we don’t care what things are, but they all need to be
the same. For example, the implementation of a List we saw
last week, in Vector<?>.
Or you can care a little bit: Vector<? extends Number>.
You specify when you create the instance of Vector exactly
which kind of Number you want.



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Anonymous Classes

What use is a class without a name? When you’re using it as
a one-off instance (see also the “Singleton Pattern”).
Double fortytwo = new Double(42) { String

toString() { return "What are six sevens?"; } }
It’s a normal Double, you can do maths with it:
System.out.println(fortytwo+1.0);

but it’s got an extra feature:
System.out.println(fortytwo);



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Concurrency Control

Java tends to use lots of threads. If you’re writing a web or
chat server in Java, you’ll almost certainly create a thread per
client/connection.
You can create a new thread by either subclassing Thread, or
implementing Runnable. Either way, you’ll be writing a new
method, run() which does something.
Thread t=new Thread() { void run() { ... } };
t.start();

Potential pitfall here: do NOT call run() directly! That will
skip creating a new thread, and just run the code directly, on
the thread you’re in now.



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Threading example

class Demo extends Thread {
public void run() {

for (int i=1;i<5;i++) {
System.out.println(i);

Thread.sleep(100);

}
}
public static void main(String args[]) {

for (int i=1;i<3;i++) {
Thread t=new Demo();

t.start();

}
}

}



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Threading example details

Why extend Thread?

Where does start() come from?

How would I do it by implementing Runnable?

Why would I want or need to do that?



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Threading example details

Why extend Thread?

Where does start() come from?

How would I do it by implementing Runnable?

Why would I want or need to do that?



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Threading example details

Why extend Thread?

Where does start() come from?

How would I do it by implementing Runnable?

Why would I want or need to do that?



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Threading example details

Why extend Thread?

Where does start() come from?

How would I do it by implementing Runnable?

Why would I want or need to do that?



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Graphical User Interfaces — AWT

AWT: Sun’s first attempt at giving Java a GUI, back in 1995.
Unfortunately ... it wasn’t very good.
(To be fair, a totally cross platform GUI library was new
territory at the time!)
In 1995, it was new, and seemed cool. It tried to use the
native interface components.



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

GUI take 2 — Swing

In the next version of Java, 1.2, Sun tried again.
Swing.
A whole new look and feel of its own: whatever platform
you’re on, Swing looks the same.
Which means your Java applications stick out like a sore
thumb! People don’t like that.
Sun/Oracle moved on to JavaFX — which we will ignore.



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

GUI take 3 — SWT

Use the native UI components, but with enough of a Java
abstraction layer on top to make things work uniformly
everywhere.
This is what Eclipse is built on, so you’ve already used an
SWT application quite a bit.



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Start with SWT

Download the SWT framework from eclipse.org — be careful,
it defaults to 64 bit for Windows!
Follow instructions:
https://www.eclipse.org/swt/eclipse.php

https://www.eclipse.org/swt/eclipse.php


CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

SWT first programme

public static void main(String[] args) {
Display display = new Display ();

Shell shell = new Shell (display);

shell.open ();

while (!shell.isDisposed ()) {
if (!display.readAndDispatch ())

display.sleep ();

}
display.dispose ();

}
}



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Regular Expressions

A simple text description language for matching strings. In
Java, String.match().
For example, check if a string starts with a capitalised word:
"^[A-Z][a-z]*".



CE0825a - Object Oriented Programming II 3: Object Recap, GUI, Regular Expressions

Week 3 Lab Tasks

Get the SWT example working

Add a MenuBar, MenuItems, window title and StyledText
widget

Make that fill the window, complete your text editor
application

Fill up the MenuBar with the usual File, Edit etc.

If that all seems easy, implement some regular
expressions. Report matches to the user.


