
CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

CE0825a: Object Oriented Programming II
11: Algorithms, Structures, Searching

James A Sutherland

Abertay University

Monday, 21st March 2016



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithms

The basic tools of programming: sorting, searching. . .
How do we compare them? Which is ‘best’?

CPU usage
Memory usage
Quality (Zopfli takes 1s to shave 35k off this PDF)
Note: Often a trade-off between those
LZMA2 (‘Ultra’, 8 threads): over 4Gb!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Notation

Quick short-hand way of describing roughly how an
algorithm scales
Form of “Bachmann-Landau notation”, but name “Big O”
stuck
Memory/workspace
Time (usually CPU)
If the problem size doubles, resource needs . . . ?
For example: “O(n) time, O(1) space”



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Notation

Quick short-hand way of describing roughly how an
algorithm scales
Form of “Bachmann-Landau notation”, but name “Big O”
stuck
Memory/workspace
Time (usually CPU)
If the problem size doubles, resource needs . . . ?
For example: “O(n) time, O(1) space”



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Notation

Quick short-hand way of describing roughly how an
algorithm scales
Form of “Bachmann-Landau notation”, but name “Big O”
stuck
Memory/workspace
Time (usually CPU)
If the problem size doubles, resource needs . . . ?
For example: “O(n) time, O(1) space”



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Notation

Quick short-hand way of describing roughly how an
algorithm scales
Form of “Bachmann-Landau notation”, but name “Big O”
stuck
Memory/workspace
Time (usually CPU)
If the problem size doubles, resource needs . . . ?
For example: “O(n) time, O(1) space”



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Notation

Quick short-hand way of describing roughly how an
algorithm scales
Form of “Bachmann-Landau notation”, but name “Big O”
stuck
Memory/workspace
Time (usually CPU)
If the problem size doubles, resource needs . . . ?
For example: “O(n) time, O(1) space”



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Notation

Quick short-hand way of describing roughly how an
algorithm scales
Form of “Bachmann-Landau notation”, but name “Big O”
stuck
Memory/workspace
Time (usually CPU)
If the problem size doubles, resource needs . . . ?
For example: “O(n) time, O(1) space”



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example: Calculate Mean

From back in week 2:
1 Iterate through each item in list
2 Add to running total and counter
3 Divide those values and return



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example: Calculate Mean

From back in week 2:
1 Iterate through each item in list
2 Add to running total and counter
3 Divide those values and return



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example: Calculate Mean

From back in week 2:
1 Iterate through each item in list
2 Add to running total and counter
3 Divide those values and return



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Analysing Mean Algorithm

How does that algorithm perform if we have twice, or ten
times, as many items?

Time Visits each item exactly once, so clearly linear
time (O(n))

Space Still just one counter and one running total:
constant space (O(1))



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Analysing Mean Algorithm

How does that algorithm perform if we have twice, or ten
times, as many items?

Time Visits each item exactly once, so clearly linear
time (O(n))

Space Still just one counter and one running total:
constant space (O(1))



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Typical Complexities

Constant O(1) Fixed: resources unaffected by input size.
Log O(ln n) Slightly more for each doubling of input

size.
Linear O(n) Proportional: 10× data→ 10× resources

Quasilinear O(n ln n) 10× data→ c12× resources

Quadratic O(n2) 10× data→ 100× resources

Cubic O(n3) 10× data→ 1, 000× resources

Exponential O(en)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example Complexities

Constant Space Finding mean of inputs
Log Time Searching an index

Linear Time Finding mean of inputs
Quasilinear Time Quicksort on most inputs
Quadratic Time Selection sort (find lowest, remove, repeat)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example Complexities

Constant Space Finding mean of inputs
Log Time Searching an index

Linear Time Finding mean of inputs
Quasilinear Time Quicksort on most inputs
Quadratic Time Selection sort (find lowest, remove, repeat)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example Complexities

Constant Space Finding mean of inputs
Log Time Searching an index

Linear Time Finding mean of inputs
Quasilinear Time Quicksort on most inputs
Quadratic Time Selection sort (find lowest, remove, repeat)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example Complexities

Constant Space Finding mean of inputs
Log Time Searching an index

Linear Time Finding mean of inputs
Quasilinear Time Quicksort on most inputs
Quadratic Time Selection sort (find lowest, remove, repeat)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Example Complexities

Constant Space Finding mean of inputs
Log Time Searching an index

Linear Time Finding mean of inputs
Quasilinear Time Quicksort on most inputs
Quadratic Time Selection sort (find lowest, remove, repeat)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Sorting

Sorting is hard work, often needed, well studied
Clearly no sub-linear time solution possible: must visit
each item at least once
Possibly constant space though: could sort input in-place



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Sorting

Sorting is hard work, often needed, well studied
Clearly no sub-linear time solution possible: must visit
each item at least once
Possibly constant space though: could sort input in-place



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Sorting

Sorting is hard work, often needed, well studied
Clearly no sub-linear time solution possible: must visit
each item at least once
Possibly constant space though: could sort input in-place



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Limitations

Generic/ideal abstract machine, no CPU specifics
General case, ignores tiny/huge/corner cases
Ignores parallelism: on 8 core CPU, multithreaded may be
8× faster, same big-O
Ignores constants: multithreaded LZMA2 compression
can be over 4 Gb, still ‘constant’
Tiny data sets cached, huge ones mean hitting disk



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Limitations

Generic/ideal abstract machine, no CPU specifics
General case, ignores tiny/huge/corner cases
Ignores parallelism: on 8 core CPU, multithreaded may be
8× faster, same big-O
Ignores constants: multithreaded LZMA2 compression
can be over 4 Gb, still ‘constant’
Tiny data sets cached, huge ones mean hitting disk



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Limitations

Generic/ideal abstract machine, no CPU specifics
General case, ignores tiny/huge/corner cases
Ignores parallelism: on 8 core CPU, multithreaded may be
8× faster, same big-O
Ignores constants: multithreaded LZMA2 compression
can be over 4 Gb, still ‘constant’
Tiny data sets cached, huge ones mean hitting disk



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Limitations

Generic/ideal abstract machine, no CPU specifics
General case, ignores tiny/huge/corner cases
Ignores parallelism: on 8 core CPU, multithreaded may be
8× faster, same big-O
Ignores constants: multithreaded LZMA2 compression
can be over 4 Gb, still ‘constant’
Tiny data sets cached, huge ones mean hitting disk



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Big-O Limitations

Generic/ideal abstract machine, no CPU specifics
General case, ignores tiny/huge/corner cases
Ignores parallelism: on 8 core CPU, multithreaded may be
8× faster, same big-O
Ignores constants: multithreaded LZMA2 compression
can be over 4 Gb, still ‘constant’
Tiny data sets cached, huge ones mean hitting disk



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithmic Complexity Summary

Each algorithm has two key complexities: time, space
Two algorithms could have similar complexity but one is
faster
Generally refers to typical case, ignores corner cases



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithmic Complexity Summary

Each algorithm has two key complexities: time, space
Two algorithms could have similar complexity but one is
faster
Generally refers to typical case, ignores corner cases



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Algorithmic Complexity Summary

Each algorithm has two key complexities: time, space
Two algorithms could have similar complexity but one is
faster
Generally refers to typical case, ignores corner cases



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structures

Lists Arrays, linked lists
Trees Binary trees, red-black trees
Tables Hash tables, lookup tables



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structures

Lists Arrays, linked lists
Trees Binary trees, red-black trees
Tables Hash tables, lookup tables



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structures

Lists Arrays, linked lists
Trees Binary trees, red-black trees
Tables Hash tables, lookup tables



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Array

Insert Linear time (rewrite)
Delete Linear time (rewrite)
Search Linear time



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Array

Insert Linear time (rewrite)
Delete Linear time (rewrite)
Search Linear time



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Array

Insert Linear time (rewrite)
Delete Linear time (rewrite)
Search Linear time



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Linked List

Insert Constant time once found
Delete Constant time once found
Search Linear time



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Linked List

Insert Constant time once found
Delete Constant time once found
Search Linear time



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Linked List

Insert Constant time once found
Delete Constant time once found
Search Linear time



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Binary Tree

When (roughly) balanced
Insert O(ln n)
Delete O(ln n)
Search O(ln n)

All variants of searching: find the point where the
item is or should be.
Caveat: in-order insertions can turn the tree into
a linked list, O(n) for all!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Binary Tree

When (roughly) balanced
Insert O(ln n)
Delete O(ln n)
Search O(ln n)

All variants of searching: find the point where the
item is or should be.
Caveat: in-order insertions can turn the tree into
a linked list, O(n) for all!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Binary Tree

When (roughly) balanced
Insert O(ln n)
Delete O(ln n)
Search O(ln n)

All variants of searching: find the point where the
item is or should be.
Caveat: in-order insertions can turn the tree into
a linked list, O(n) for all!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Binary Tree

When (roughly) balanced
Insert O(ln n)
Delete O(ln n)
Search O(ln n)

All variants of searching: find the point where the
item is or should be.
Caveat: in-order insertions can turn the tree into
a linked list, O(n) for all!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Binary Tree

When (roughly) balanced
Insert O(ln n)
Delete O(ln n)
Search O(ln n)

All variants of searching: find the point where the
item is or should be.
Caveat: in-order insertions can turn the tree into
a linked list, O(n) for all!



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Red-Black Tree

Binary tree
Mark (colour) each node either red or black
Red nodes have only black child nodes
Every path contains the same number of black nodes
Shortest has all black, longest alternates black-red, i.e.
twice as long



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Red-Black Tree

Binary tree
Mark (colour) each node either red or black
Red nodes have only black child nodes
Every path contains the same number of black nodes
Shortest has all black, longest alternates black-red, i.e.
twice as long



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Red-Black Tree

Binary tree
Mark (colour) each node either red or black
Red nodes have only black child nodes
Every path contains the same number of black nodes
Shortest has all black, longest alternates black-red, i.e.
twice as long



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Red-Black Tree

Binary tree
Mark (colour) each node either red or black
Red nodes have only black child nodes
Every path contains the same number of black nodes
Shortest has all black, longest alternates black-red, i.e.
twice as long



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Red-Black Tree

Binary tree
Mark (colour) each node either red or black
Red nodes have only black child nodes
Every path contains the same number of black nodes
Shortest has all black, longest alternates black-red, i.e.
twice as long



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Red Black Tree Example1

1Source: https://commons.wikimedia.org/wiki/File:
Red-black_tree_example.svg

https://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg
https://commons.wikimedia.org/wiki/File:Red-black_tree_example.svg


CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Lookup Tables

1 AMG
2 SET
3 DBS
4 SHS
5 GS



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Lookup Table Operations

Insert Linear time (rewrite)
Delete Linear time (rewrite)
Search Constant time: jump to offset (linear time for

reverse)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Lookup Table Operations

Insert Linear time (rewrite)
Delete Linear time (rewrite)
Search Constant time: jump to offset (linear time for

reverse)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Lookup Table Operations

Insert Linear time (rewrite)
Delete Linear time (rewrite)
Search Constant time: jump to offset (linear time for

reverse)



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Data Structure: Hash Tables

Split the data into ‘buckets’ by ‘hash value’. Calculate the
hash, search that bucket.
Bernstein CDB hash function:
h = 5381
for each byte:
h = h × 33⊕ byte
End result is an array, but containing only some fraction of the
total data.
With a predetermined list, like language keywords, you can
precompute a perfect hash in which each valid word has a
unique value.



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Hash Table Example2

2Source: https://commons.wikimedia.org/wiki/File:
Hash_table_3_1_1_0_1_0_0_SP.svg

https://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg
https://commons.wikimedia.org/wiki/File:Hash_table_3_1_1_0_1_0_0_SP.svg


CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Searching and Soundex

1 BFPW
2 CGJKQSXZ
3 DT
4 L
5 MN
6 R

Encode (English) words into
alphanumeric strings so that words which
sound the same have the same code.

1. Leave the first letter alone
2. Drop vowels, Y, H, W
3. Drop repetitions unless they
were separated by a vowel-sound
4. Take 3 digits,
truncate/zero-extend as needed

e.g. their, they’re, there = T600



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Lab Task Week 11

1 Find and try out the built in Java data structures,
classifying their time complexity

2 Write your own Soundex implementation in Java



CE0825a: Object Oriented Programming II 11: Algorithms, Structures, Searching

Lab Task Week 11

1 Find and try out the built in Java data structures,
classifying their time complexity

2 Write your own Soundex implementation in Java


